Attributing a probability to the shape of a probability density
نویسندگان
چکیده
منابع مشابه
Attributing a Probability to the Shape of a Probability Density
We discuss properties of two methods for ascribing probabilities to the shape of a probability distribution. One is based on the idea of counting the number of modes of a bootstrap version of a standard kernel density estimator. We argue that the simplest form of that method suffers from the same difficulties that inhibit level accuracy of Silverman’s bandwidth-based test for modality: the cond...
متن کاملAttributing a Probability to the Shape of a Probability Density By
We discuss properties of two methods for ascribing probabilities to the shape of a probability distribution. One is based on the idea of counting the number of modes of a bootstrap version of a standard kernel density estimator. We argue that the simplest form of that method suffers from the same difficulties that inhibit level accuracy of Silverman’s bandwidth-based test for modality: the cond...
متن کاملA new probability density function in earthquake occurrences
Although knowing the time of the occurrence of the earthquakes is vital and helpful, unfortunately it is still unpredictable. By the way there is an urgent need to find a method to foresee this catastrophic event. There are a lot of methods for forecasting the time of earthquake occurrence. Another method for predicting that is to know probability density function of time interval between earth...
متن کاملA Volumetric Probability and Probability Density 38
In ‘inverse problems’ data from indirect measurements are used to estimate unknown parameters of physical systems. Uncertain data, (possibly vague) prior information on model parameters, and a physical theory relating the model parameters to the observations are the fundamental elements of any inverse problem. Using concepts from probability theory, a consistent formulation of inverse problems ...
متن کاملON THE STATIONARY PROBABILITY DENSITY FUNCTION OF BILINEAR TIME SERIES MODELS: A NUMERICAL APPROACH
In this paper, we show that the Chapman-Kolmogorov formula could be used as a recursive formula for computing the m-step-ahead conditional density of a Markov bilinear model. The stationary marginal probability density function of the model may be approximated by the m-step-ahead conditional density for sufficiently large m.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 2004
ISSN: 0090-5364
DOI: 10.1214/009053604000000607